Ref No:

Sri krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-20

Program:	B E – Mechanical Engineering
Semester :	7
Course Code:	15ME72
Course Title:	Fluid Power Systems
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	Mr.PRAMOD S N / Mr.SHANKAREGOWDA K C

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

Table of Contents

A. COURSE INFORMATION	. 4	
1. Course Overview		4
2. Course Content		4
3. Course Material		
4. Course Prerequisites		7
5. Content for Placement, Profession, HE and GATE		7
B. OBE PARAMETERS	. 7	
1. Course Outcomes		7
2. Course Applications		8
3. Mapping And Justification		8
4. Articulation Matrix	1	1
5. Curricular Gap and Content	1	2
6. Content Beyond Syllabus	1	2
C. COURSE ASSESSMENT	12	
1. Course Coverage		
2. Continuous Internal Assessment (CIA)	1	2
D1. TEACHING PLAN - 1	13	
Module - 1	1	3
Module 2 – Pumps and actuators	1	4
E1. CIA EXAM – 1	15	
a. Model Question Paper - 1	1	5
b. Assignment -1		
D2. TEACHING PLAN - 2	17	
Module – 3		7
Module – 4	1	8
E2. CIA EXAM – 2	19	
a. Model Question Paper - 2	1	9
b. Assignment – 2		
D3. TEACHING PLAN - 3	20	
Module – 5		20
E3. CIA EXAM – 3	21	
a. Model Question Paper - 3		21
b. Assignment – 3		
F. EXAM PREPARATION		
1. University Model Question Paper		23
2. SEE Important Questions		
G. Content to Course Outcomes		
1. TLPA Parameters		25
2. Concepts and Outcomes:		
1		-

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Semester:	7	Academic Year:	2019-20
Course Title:	Fluid power system	Course Code:	15ME72
Credit / L-T-P:	4 / 4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	80 Marks
CIA Marks:	20 Marks	Assignment	1 / Module
Course Plan Author:	Pramod S N	Sign	Dt:
Checked By:	Shankaregowda K C	Sign	Dt:
CO Targets	CIA Target :%	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachin	Identified Module	Blooms
ule		g Hours	Concepts	Learning Levels
1	Introduction to fluid power systems, components, advantages and applications. Transmission of power at static and Dynamic states. Pascal's law and its applications. Fluids for hydraulic system: types, properties, and selection. Additives, effect of temperature and Pressure on hydraulic fluid. Seals, sealing materials, Compatibility of seal with fluids. Pressure drop in hoses/pipes. Heat exchangers. Control heat exchangers. Types of pipes, Hoses and quick acting couplings. Fluid conditioning through filters, Strainers; sources of contamination and contamination		Fluid Power	L2
2	Classification of pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps Fixed,Pump performance characteristics, pump selection factors procedure Problems on pumps. Types of Intensifiers, Pressure switches /sensor, Temperature switches/sensor, Level sensor. Cost estimation of mechanical process, idling time. Actuators:Classification cylinder and hydraulic motors, Hydraulic cylinders, single acting cylinder Mounting arrangements, cushioning, special types of cylinders, problems on cylinders. Construction and working of rotary actuators such as gear, vane, piston motors, and Hydraulic Motor. Theoretical torque, power, flow rate, andhydraulic motor performance; numerical problems. Symbolic representation of hydraulic actuators (cylinders and motors).		Working principles	L2
3	Components and hydraulic circuit design Components:Classification of control valves, Directional Control Valves-symbolic representation, Constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, and check valves Pressure control valves - types, direct operated types and pilot operated types. Flow Control Valves -compensated and non- compensate d FCV, Needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, Design: Control of single andDouble -acting hydraulic cylinder,		Circuits	L2

	regenerative circuit, pump unloading circuit, Double pump hydraulic system, counter balance valve application, Hydraulic cylinder sequencing circuits, cylinder synchronizing			
	circuit Hydraulic circuit for force multiplication Speed control of hydraulic cylinder- metering in, metering out Bleed off circuits. Pilot pressure operated circuits Hydraulic Circuit examples with accumulator.			
4	Introduction to Pneumatic systems:Pneumatic power system, Advantages, limitations, applications, Choice of working medium. Characteristics of compressed air and air compressors. Structure of pneumatic control System Fluid conditioners-dryers and FRL unit. Pneumatic Actuators: Linear cylinder – types of cylinders, working End position cushioning, seals, mounting arrangements, and applications. Pneumatic Actuators: Linear cylinder – types of cylinders, working End position cushioning, seals, mounting arrangements, and applications. Rotary cylinders- types, construction and application, Symbols. Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, Pneumatic Control Valves: DCV such as poppet, spool, suspended se control valves, types and construction Use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure.	10	Pneumatic System	L2
	 Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and exhaust Signal Processing Elements: Multi- Cylinder Application: Coordinated and sequential motion control, Control: Principles - signal input and output, pilot assisted solenoid control of directional control Signal elimination methods, Cascading method principle, Practical application Air throttling. Valves, use of relay and contactors. Control circuitry for simple signalcylinder applicationUse of Logic gates - OR and AND gates in pneumatic Applications. Motion and control Diagrams. Electro- Pneumatic Practical examples involving the use of logic gates. Multi- Cylinder Application: Coordinated and sequential motion control, motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves). Electro- Pneumatic Control: Principles - signal input and output, pilot assisted solenoid control of directional control valves, use of relay and contactors. Control circuitry for simple signal cylinder application. 	10	Logic control	L2

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Module	Details	Chapters	Availability
S		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	1. Anthony Esposito, "Fluid Power with applications", Pearson edition, 2000.		Available
4, 5	2. Majumdar S.R., "Oil Hydraulics", TalaMcGRawHllL, 2002 .	1,2,3,4,56	

	3. Majumdar S.R., "Pneumatic systems - Principles and Maintenance", Tata McGraw-Hill, New Delhi, 2005	,7,8,9,10,	
	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	John Pippenger, Tyler Hicks, "Industrial Hydraulics", McGraw Hill International Edition, 1980.	?	In Lib
1, 2	Andrew Par, Hydraulics and pneumatics, Jaico Publishing House, 2005.	?	Not Available
3, 4, 5	FESTO, Fundamentals of Pneumatics, Vol I,IIandIII.	?	Not Available
	Herbert E. Merritt, "Hydraulic Control Systems", John Wiley and Sons, In		Not Available
С	Concept Videos or Simulation for Understanding	-	-
C1			
C2			
C3			
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	
1		-	_
?			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Studer	Students must have learnt the following Courses / Topics with described Content							
Modu	Course	Course Name	Topic / Description	Sem	Remarks	Blooms		
les	Code					Level		
1,2,3,	15ME44	Fluid Mechanics	Module 1,2 &3	4	-	L2		

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

······································								
Modu	Topic / Description	Area	Remarks	Blooms				
les				Level				
1	Fluid power	Higher Study		Understand				
				L2				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Modu	Course	Course Outcome	Teach.	Concept	Instr	Assessment	Blooms'
les	Code.#	At the end of the course, student	Hours		Method	Method	Level
		should be able to					

15ME72 Copyright ©2017. cAAS. All rights reserved.

1 1						Ì	1 1
1		Understand and analyze fluid	5			Assignm	
		power and modes		Fluid	and		Understand
				power	Board	test and	
						CIA	
1	15ME72.2	1 1	5		Chalk	Assignm	
		circuitry requirement		Componen	and		Understand
				ts	Board	test and	
						CIA	
2		Visualize the construction and	6		Chalk	Assignm	
		working of pumps		Mechanis	and	-	Understand
				m	Board	test and	
						CIA	
2		Apply control components as per	4		Chalk	Assignm	
		design		Features	and	-	Understand
					Board	test and	
						CIA	
3	15ME72.5	Components distribution	6		Chalk	Assignm	
				Componen			Understand
				ts	Board	test and	
-						CIA	
3	15ME72.6	Design of circuit	4		Chalk	Assignm	
				Circuits	and	-	Understand
					Board	test and	
4					~ 11	CIA	
4	15ME72.7	Understand pneumatic structure	5	- ·	Chalk	Assignm	
				Pneumatic	and	-	Understand
				systems	Board	test and	
4	1510000	T , , • •,	~	C ' '	CI 11	CIA	1.0
4	15ME/2.8	Interpreting circuit	5	Circuit	Chalk	Assignm	
					and	-	Understand
					Board	test and	
5	1511070.0		F	Actor	Ch - 11-	CIA	I O
3	15ME/2.9	Logic control	5	Actuation	Chalk	Assignm	
					and	-	Understand
					Board	test and	
5	1511070 1	Into anotion b (m anot	F		Ch - 11	CIA	I O
3		Integration b/w systems	5	Interretie	Chalk	Assignm	
	0			Integration	and		Understand
					Board	test and	
		To4-1	()			CIA	1214
-	-	Total	62	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

Modu	Application Area	CO	Level
les	Compiled from Module Applications.		
1	Petroleum Industry	CO1	L2
	Oil distribution pipelines	CO2	L2
2	Computational fluid dynamics	CO3	L2
	Programmable controllers	CO4	L2
3	Centralized distribution cell in chemical industries	CO5	L2

15ME72 Copyright ©2017. cAAS. All rights reserved.

	Grid companies	CO6	L2
4	Small and medium automation	CO7	L2
	Academic demonstration	CO8	L2
5	Actuation	CO9	L2
	Design department	CO10	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod ules	Map	oping	Mappin g Level	Justification for each CO-PO pair	Lev el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
	CO1	PO1	L2	Apply the knowledge of fluid power	L2
	CO1	PO2	L2	Since it is basic science -No mapping	L2
	CO1	PO3	L2	Atudents will not be Designing/developing of solution-No mapping	L2
	CO1	PO4	L2	Since no conduction on investigations of complex Problems-No mapping	L2
	CO1	PO5	L2	No Modern tools are used -No mapping	L2
	CO1	PO6	L2	No inpact on engineers and society-No mapping	L2
	CO1	PO7	L2	Will not be affected on environment and sustainability-No mapping	L2
	CO1	PO8	L2	Since the study is limited to basics -No mapping	L2
	CO1	PO9	L2	Will not be working either Individual nor team work-No mapping	L2
	CO1	PO10	L2	NO instruction will be given -No mapping	L2
	CO1	PO11	L2	No application of management and finance principles involved -No mapping	L2
	CO1	PO12	L2	Due to change in technology-No mapping	L2
	CO2	PO1	L3	No application of Engineering knowledge-No mapping	L2
	CO2	PO2	L2	No problem analysis as it is basic science-No mapping	L2
	CO2	PO3	L2	Design and development of solution	L2
	CO2	PO4	L2	Their is no investigations of complex Problems-No mapping	L2
	CO2	PO5	L2	No creation of sketches -No mapping	L2
	CO2	PO6	L2	The engineer and society issues -No mapping	L2
	CO2	PO7	L2	No impact on environment and sustainability-No mapping	L2
	CO2	PO8	L2	Normal Engg norms and practice -No mapping	L2
	CO2	PO9	L2	Their is no projects to be done -No mapping	L2
	CO2	PO10	L2	No usage of documents -No mapping	L2
	CO2	PO11	L2	No usage Project management and finance principals -No mapping	L2
	CO2	PO12	L2	Technology dependent -No mapping	L2
	CO3	PO1	L2	Since there is no Engineering basics -No mapping	L2
	CO3	PO2	L2	No identification of problems -No mapping	L2
	CO3	PO3	L2	Design and development of solution	L2
	CO3	PO4	L2	Will not conduct investigations of complex Problems-No mapping	L2
	CO3	PO5	L2	No creation and simulation-No mapping	L2
	CO3	PO6	L2	No obligation on societal and health issues-No mapping	L2
	CO3	PO7	L2	No impact on environment and sustainability-No mapping	L2
	CO3	PO8	L2	Normal engg. practise-No mapping	L2
	CO3	PO9		No projects and internships -No mapping	L2
	CO3	PO10	L2	No documents -No mapping	L2
	CO3	PO11		No Project management and finance principals -No mapping	L2
	CO3	PO12	L2	Technology dependent No mapping	L2
	CO4	PO1	L2	Since there is no basic engg.science-No mapping	L2
	CO4	PO2	L2	No research activity-No mapping	L2
	CO4	PO3	L2	No process of design and development of solution-No mapping	L2
	CO4	PO4	L2	No investigations of complex Problems-No mapping	L2
	CO4	PO5	L2	Application of modern tool	L2
	CO4	PO6	L2	No engineer and society issues -No mapping	L2

CO4	PO7	L2	No impact on environment and sustainability-No mapping	L2
CO4	PO8	L2	Normal engg. Practice -No mapping	L2
CO4	PO9	L2	No project work -No mapping	L2
CO4	PO10	L2	No instruction-No mapping	L2
CO4	PO11	L2	No project management and finance principles-No mapping	L2
CO4	PO12	L2	Technical dependency-No mapping	L2
CO5	PO1	L2	Engineering knowledge-No mapping	L2
CO5	PO2	L2 L2	No problem analysis-No mapping	L2 L2
CO5	PO3	L2 L2	Design and development of solution for complex problems	L2 L2
CO5	PO4	L2 L2	No research based knowledge -No mapping	L2 L2
CO5	PO5	L2 L2	No creation of design and process-No mapping	L2 L2
CO5	PO6	L2 L2	No legal issues-No mapping	L2 L2
CO5	PO7	L2	No impact on environment and sustainability-No mapping	L2
CO5	PO8	L2	No application of engg. Practice -No mapping	L2
CO5	PO9	L2	No Project work-No mapping	L2
CO5	PO10	L2	No instruction-No mapping	L2
CO5	PO11	L2	No Project management and finance principles -No mapping	L2
CO5	PO12	L2	Technology dependence -No mapping	L2
	1012	112		
CO6	PO1	L2	No basic science -No mapping	L2
CO6	PO2	L2	No identification of problem and analysis-No mapping	L2
CO6	PO3	L2	No design process-No mapping	L2
CO6	PO4	L2	No investigations of complex Problems-No mapping	L2
CO6	PO5	L2	No modern tool content -No mapping	L2
CO6	PO6	L2	No societal issues -No mapping	L2
CO6	PO7	L2	No impact on environment and sustainability-No mapping	L2
CO6	PO8	L2	Normal engg. Practice -No mapping	L2
CO6	PO9	L2	To function effectively	L2
CO6	PO10	L2	No documentation-No mapping	L2
CO6	PO11	L2	No project management and finance principles -No mapping	L2
CO6	PO12	L2	Technological dependency-No mapping	L2
CO7	PO1	L2	Engineering knowledge-No mapping	L2
CO7	PO2	L2	No problem analysis-No mapping	L2
CO7	PO3	L2	Design and development of solution-No mapping	L2
CO7	PO4	L2	Conduct investigations of complex Problems-No mapping	 L2
CO7	PO5	L2	Application of modern tool	 L2
CO7	PO6	L2	The engineer and society-No mapping	L2
CO7	PO7	L2	Environment and sustainability-No mapping	L2
CO7	PO8	L2	Ethics-No mapping	L2
CO7	PO9	L2	Individual and team work-No mapping	L2
CO7	PO10	L2	Communication-No mapping	L2
CO7	PO11	L2	Project management and finance-No mapping	L2
CO7	PO12	L2	Life-long learning-No mapping	L2
CO8	PO1	L2	Basic engg. knowledge-No mapping	L2
CO8	PO2	L2	No research -No mapping	L2
CO8	PO3	L2	No Design/development of solution-No mapping	L2
CO8	PO4	L2	No investigations of complex Problems-No mapping	L2
CO8	PO5	L2	No tool usage-No mapping	L2
CO8	PO6	L2	No societial issues-No mapping	L2
CO8	PO7	L2	No impact on environment and sustainability-No mapping	L2
CO8	PO8	L2	Normal engg practice -No mapping	L2
CO8	PO9	L2	No projects-No mapping	L2
CO8	PO10	L2	Effective communication	L2
CO8 CO8	PO11 PO12	L2 L2	No project management and finance principles -No mapping Technological dependencyNo mapping	L2 L2
	- DE 11/2	1.7	Leconological dependencyNo manning	112

15ME72 Copyright ©2017. cAAS. All rights reserved.

CO9	PO1	L2	Requirnment of Basic science-No mapping	L2
CO9	PO2	L2	No research-No mapping	L2
CO9	PO3	L2	Design and development of solution-No mapping	L2
CO9	PO4	L2	No investigations of complex Problems-No mapping	L2
CO9	PO5	L2	Application of modern tool	L2
CO9	PO6	L2	No societial issues-No mapping	L2
CO9	PO7	L2	No impact on environment and sustainability-No mapping	L2
CO9	PO8	L2	Normal Engg. Practice -No mapping	L2
CO9	PO9	L2	No projects-No mapping	L2
CO9	PO10	L2	No documentation-No mapping	L2
CO9	PO11	L2	No project management and finance principles-No mapping	L2
CO9	PO12	L2	Technological dependency -No mapping	L2
CO10	PO1	L2	Basic knowledge-No mapping	L2
CO10	PO2	L2	No problem analysis-No mapping	L2
CO10	PO3	L2	No Design and development of solution-No mapping	L2
CO10	PO4	L2	No investigations of complex Problems-No mapping	L2
CO10	PO5	L2	Application of modern tool	L2
CO10	PO6	L2	No engineer and societal issue-No mapping	L2
CO10	PO7	L2	No impact on environment and sustainability-No mapping	L2
CO10	PO8	L2	Normal engg. practice-No mapping	L2
CO10	PO9	L2	No project work-No mapping	L2
CO10	PO10	L2	No documentation-No mapping	L2
CO10	PO11	L2	No project management and finance principles-No mapping	L2
CO10	PO12	L2	Technological dependency No mapping	L2

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair,	, with course average attainment.
---	-----------------------------------

<u></u>		with mapping level for each CO-I O pa	in,	vv I tIII	cou	11.50	ave	lage	alle	annn	icint	•						
-	-	Course Outcomes						Prog	gran	n Oi	itco	mes						-
Modu	CO.#	At the end of the course student	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
les		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	O 2	03	el
1	15ME72.1	Understand and analyze fluid power	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
		and modes																
2	15ME72.2	Select components as per circuitry	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	L2
		requirement																
3	15ME72.3	Visualize the construction and	1	-	1	-	-	I	-	-	-	-	-	-	-	-	-	L2
		working of pumps																
4	15ME72.4	Apply control components as per	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	L2
		design																
5	15ME72.5	Components distribution	1	-	1	-	-	-	-	-	-	-	-	1	-	-	-	L2
6	15ME72.6	Design of circuit	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	L2
7	15ME72.7	Understand pneumatic structure	1	-	-	-	-	I	-	-	-	-	-	-	-	-	-	L2
8	15ME72.8	Interpreting circuit	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
9	15ME72.9	Logic control	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
10	15ME72.10	Integration b/w systems	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
-	CS501PC	Average attainment (1, 2, or 3)																-
-	PO, PSO																	

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Modu	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les					
1					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Modu	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les						
1						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. o	of quest	ion in H	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction to fluid power	10	2	-	-	1	-	2	CO1, CO2	L2
	systems									
2	Pumps and actuators	10	2	-	-	1	-	2	CO3, CO4	L2
3	Components and circuit design	10	-	2	-	1	-	2	CO5, CO6	L2
4	pneumatic control systems	10	-	2	-	1	-	2	CO7, C08	L2
5	Pneumatic control systems	10	-	-	4	1	-	2	C09,C10	L2
-	Total	50	4	4	4	5	-	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	15	CO1, CO2, CO3, CO4	L2,L3
3, 4	CIA Exam – 2	15	CO5, CO6, CO7, C08	L2,L2
5	CIA Exam – 3	15	CO9, CO10	L2
1, 2	Assignment - 1	05	CO1, CO2, CO3, CO4	L2,L2
3, 4	Assignment - 2	05	CO5, CO6, CO7, CO8	L2,L2
5	Assignment - 3	05	CO9, CO10	L2
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-	CO9, CO10	L2,L2
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to fluid power	Appr	16 Hrs
		Time:	
a	Course Outcomes		Blooms level
	The student should be able to understand :		
1	Understand and analyze fluid power and modes	5	L2
2	Select components as per circuitry requirement	5	L2
b	Course Schedule	-	-

ass N	D Module Content Covered	СО	Level
1	Introduction to fluid power systems,	C01	L2
2	components, advantages and applications. Transmission of power at static and	C01	L2
	Dynamic states. Problems		
3	Pascal's law and its applications. Fluids for hydraulic system:	C01	L2
4	Types, properties, and selection.	C01	L2
5	Additives, effect of temperature and Pressure on hydraulic fluid.Seals,	C01	L2
6	Sealing materials, Compatibility of seal with fluids.	C02	L2
7	Pressure drop in hoses/pipes. Heat exchangers.	C02	L2
8	Control heat exchangers. Types of pipes,	C02	L2
9	Hoses and quick acting couplings.	C02	L2
	Fluid conditioning through filters,		
10	Strainers; sources of contamination and contamination	C02	L2
c	Application Areas	CO	Leve
1	Petroleum Industry	CO1	L2
2	Oil distribution pipelines	CO2	L2
			L2
d	Review Questions	-	L2
1	State Pascal's law. Explain with neat sketch the basic hydraulic system with respect to forces and pressure in an enclosed tank	CO1	L2
2	With a neat sketch, Explain the working of a pressure compensated variable displacement hydraulic vane pump	CO1	L2
3	Write short notes on: i) Reservoir system ii) Filters	CO1	L2
4	What are the different problems arises in the hydraulic system and also mention the remedies	CO1	L2
5	List six desirable properties of hydraulic fluid and explain any three properties	CO1	L2
6	Discuss the problems caused by the gases in hydraulic fluids	CO2	L2
7	With a neat sketch explain pressure switch	CO2	L2
8	State and explain widely used types of seals in hydraulic systems	CO2	L2
9	A vane pump has a volumetric displacement of 90 cm ³ . It has rotor dia of 5 cm and cam ring dia of 7.5 cm and a vane width of 5 cms. What must be the eccentricity	CO2	L3
10	Give the classification of pumps	CO2	L2
e	Experiences	-	-
1			
2			

Module 2 – Pumps and actuators

		Appr	10 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to understand :	-	Level
1	Computational fluid dynamics	5	L2
2	Programmable controllers	5	L2
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Classification of pumps, Pumping theory of positive displacement	CO3	L2
	pumps, construction and working of Gear pumps, Vane pumps,		
2	Piston pumpsFixed,Pump performance characteristics, pump selection	CO3	L2
	factors procedure		
3	Types of Intensifiers, Pressure switches /sensor, Temperature	CO3	L2
	switches/sensor, Level sensor, Cost estimation of mechanical process,		

	idling time.		
4	Actuators:Classification cylinder and hydraulic motors, Hydraulic cylinders, single `acting cylinder,	CO3	L2
5	Mounting arrangements, cushioning, special types of cylinders, problems on cylinders.	CO3	L2
6	Construction and working of rotary actuators such as gear, vane, piston motors, and Hydraulic Motor.	CO3	L2
7	Theoretical torque, power, flow rate, and hydraulic motor performance; numerical problems.	CO4	L2
8	Problems	CO4	L2
9	Symbolic representation of hydraulic actuators (cylinders and motors). Classification of pumps, Pumping theory of positive displacement pumps	CO4	L2
10	Construction and working of Gear pumps, Vane pumps, Piston pumps, Fixed Pump performance characteristics, pump selection factors procedure	CO4	L3
c	Application Areas	СО	Level
	The student should be able to:		
1	Computational fluid dynamics	CO3	L2
2	Programmable controllers	CO4	L2
d	Review Questions	-	-
1	Explain the mechanism of hydraulic loading	CO1	L2
2	A hydraulic motor has a displacement of 130cm ³ operates with a pressure of 105 bars & at a speed of 2000rpm.if actual flow rate is 0.005m ³ /s and actual torque delivered by motor is 200n-m find Volumetric efficiency, Mechanical efficiency and overall efficiency	CO1	L2
3	Describe "END CUSHIONING" with a a neat sketch	CO1	L2
4	A hydraulic motor has volumetric efficiency of 90% and operates at 1750 rpm and pressure of 6.9 Mpa if the actual flow of the motor is 285 lpm and actual torque of the motor is 147Nm.find the overall	CO2	L2
	efficiency		
5		CO3	L2
5	efficiency	CO3 CO3	L2 L2
	efficiency State the advantages of an pneumatic system?		
6	efficiency State the advantages of an pneumatic system? Explain with a neat sketch, working of balanced vane motor Sketch and explain simple pneumatic system. also write a short note	CO3	L2
6 7	efficiency State the advantages of an pneumatic system? Explain with a neat sketch, working of balanced vane motor Sketch and explain simple pneumatic system. also write a short note on cylinder mounting arrangement and it's types	CO3	L2 L2

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	17ME72	Sem:	VII	Marks:	15	Time:	75 minutes		
Cours	se:	Fluid power s	systems							
-	-	Note: Answe	r any 2 quest	tions, each ca	rry equal ma	rks.		Marks	CO	Level

1	a	State Pascal's law. Explain with neat sketch the basic hydraulic system with respect to forces and pressure in an enclosed tank?	5	CO1	L2
	b	With a neat sketch, Explain the working of a pressure compensated variable displacement hydraulic vane pump?	5	CO1	L2
	с	A vane pump has a volumetric displacement of 90 cm ³ . It has rotor dia of 5 cm and cam ring dia of 7.5 cm and a vane width of 5 cms. What must be the eccentricity?	5	CO2	L3
		OR			
2	a	List six basic components required in a hydraulic power system and state the essential functions of each?	5	CO2	L2
	b	With neat sketch, Explain Vane pump and obtain an expression for the volumetric displacement of the pump?	5	CO2	L2
	С	What are the important considerations when selecting a pump for a particular application?	5	CO2	L2
3	a	Explain the mechanism of hydraulic loading	5	CO2	L2
	b	With a neat sketch explain static and dynamic state of fluid		CO2	L2
	С	A hydraulic motor has a displacement of 130cm ³ operates with a pressure of 105 bars & at a speed of 2000rpm.if actual flow rate is 0.005m ³ /s and actual torque delivered by motor is 200n-m find Volumetric efficiency, Mechanical efficiency and overall efficiency	5	CO2	L3
4	a	Explain with a neat sketch, working of Double acting pneumatic cylinder	5	CO2	L2
	b	Sketch and explain Rod less type of air cylinder?	5	CO2	L2
	с	Write a note on characteristics if compressed air? Sketch and explain turbine type air motor	5	CO2	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				N	Model Assignmer	nt Question	18				
Crs Co	ode:	15ME72	Sem:	VII	Marks:	5	Time:	180 minut	80 minutes		
Cours	e:	Fluid pov	ver systems								
Note:	Each	student to a	inswer 2-3 assi	gnments	. Each assignmer	nt carries e	qual mark.				
SNo		USN			Assignment Des	scription		Marks	СО	Level	
1			State pascal	s law ai	nd explain wit	h a neat s	sketch	5	CO1	L2	
2			with a press actual flow motor is 200	ure of 1 rate is ()n-m fir	105 bars & at a 0.005m ³ /s and	a speed o actual to	30cm ³ operates f 2000rpm.if rque delivered by cy, Mechanical	5 y	CO2	L3	
3			Describe "E	ND CU	JSHINING" w	vith a a ne	eat sketch		CO2	L2	
4			operates at 1 flow of the 1	750 rp notor is	m and pressur	e of 6.9 N actual to	cy of 90% and Mpa if the actual rque of the moto		CO1	L2	

5	State the advantages of an pneumatic system	5	CO1	L2
6	Explain with a neat sketch, working of balanced vane	5	C01	L2
	motor			
7	Sketch and explain simple pneumatic system.also write a	5	CO2	L2
	short note on cylinder mounting arrangement and it's types			
8	Sketch and explain Rod less type of air cylinder	5	CO2	L2
9	Explain the mechanism of hydraulic loading	5	CO2	L2
10	Explain with a neat sketch, working of Double acting	5	CO2	L2
10	pneumatic cylinder	5	002	112
11	- · · ·	5	CO2	L2
11 12	Sketch and explain Rod less type of air cylinder			
12	Write a note on characteristics if compressed air? Sketch	5	CO2	L2
- 10	and explain turbine type air motor		0.01	
13	State Pascal's law. Explain with neat sketch the basic	5	CO1	L2
	hydraulic system with respect to forces and pressure in an			
	enclosed tank			
14	Explain the concept of fluid transmission in static state	5	CO1	L2
15	A vane pump has a volumetric displacement of 90 cm ³ . It	5	CO1	L2
	has rotor dia of 5 cm and cam ring dia of 7.5 cm and a vane			
	width of 5 cms. What must be the eccentricity?			
16	Write a note on heat exchangers	5	CO1	L2
17	What are the measures for control of contamination	5	CO1	L2
18	What do you mean by strainers.?	5	CO1	L2
19	Explain fluid conditioning through filters	5	CO1	L2
20	Explain pressure drop in hoses and pipes	5	CO1	L2
21	Give the classification of pipes and hoses	5	CO1	L2
22	What is the effect of temperature on hydraulics fluids ?	5	CO1	L2
23	What is the effect of pressure on hydraulics fluids ?	5	CO1	L2
24 25	What are the different additives for hydraulics fluids ?	5 5	C01	L2 L2
25	With a neat sketch, Explain the working of a pressure	3	CO1	LZ
	compensated variable displacement hydraulic vane pump			
26	Give the classification of pumps	5	CO2	L2
27	What do you mean by positive displacement pump?	5	CO2	L2
28	With a neat sketch explain working of Gear pump	5	CO2	L2
29	With a neat sketch explain working of vane pump	5	CO2	L2
30	With a neat sketch explain working of piston pump	5	CO2	L2
31	With a neat sketch explain working of fixed displacement pump	5	CO2	L2
32	With a neat sketch explain working of Gear pump variable	5	CO2	L2
	displacement pump			
33	What are the factors needed for pump selection?	5	CO2	L2
34	With a neat sketch explain working of Gear motor	5	CO2	L2
35	With a neat sketch explain working of vane motor	5	CO2	L2
36	With a neat sketch explain working of piston motor	5	CO2	L2
37	Give any 2 expressions for motor performance	5	CO2	L2

D2. TEACHING PLAN - 2

Module – 3

Title:	Components and circuit design	Appr Time:	16 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level

15ME72 Copyright ©2017. cAAS. All rights reserved.

1	Analyses the working of components	5	L2
2	Build the circuit for certain applications	5	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Components and hydraulic circuit design Components: Classification of control	CO5	L2
	valves, Directional Control Valves-symbolic representation,		
2	Constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, and check valvesPressure control valves - types, direct operated types and pilot operated types. Flow Control Valves -compensated and non-compensated FCV,	CO5	L2
3	Needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV,	CO5	L2
4	Design:Control of single and Double -acting hydraulic cylinder, regenerative circuit, pump unloading circuit,	CO5	L2
5	Double pump hydraulic system, counter balance valve application,	CO5	L2
6	Hydraulic cylinder sequencing circuits, cylinder synchronizing circuit	CO5	L2
7	Hydraulic circuit for force multiplication	CO5	L2
8	Speed control of hydraulic cylinder- metering in, metering out	CO6	L2
9	Bleed off circuits. Pilot pressure operated circuits	CO6	L2
10	Hydraulic Circuit examples with accumulator.	CO6	L2
11	Components and hydraulic circuit design ComponentsClassification of control valves, Directional Control Valves-symbolic representation,	CO6	L2
12	Constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, and check valvesPressure control valves - types, direct operated types and pilot operated types. Flow Control Valves -compensated and non-compensated FCV,	CO6	L2
13	Needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV,	CO6	L2
с	Application Areas	СО	L3
1	Small and medium automation	CO5	L2
2	Academic demonstration	CO6	L2
d	Review Questions	-	
1	Sketch and explain Needle valve	CO5	L2
2	Sketch and explain temperature compensated, pressure compensated valve	CO5	L2
3	Sketch and explain Control of single and Double -acting hydraulic cylinder	CO5	L2
4	Sketch and explain cylinder synchronizing circuit	CO5	L2
5	Sketch and explain Hydraulic Circuit examples with accumulator.	CO5	L2
6	Explain Speed control of hydraulic cylinder- metering in, metering out	CO5	L2
	Explain Hydraulic circuit for force multiplication	CO6	L2
8	Sketch and explain Bleed off circuits. Pilot pressure operated circuits	CO6	L2
9	Sketch and explain Hydraulic cylinder sequencing circuits,	CO6	L2
10	Sketch and explain Directional Control Valves-symbolic representation,	CO6	L2
e	Experiences	-	-
1			
2			
3			
<u>3</u> 4			

Module – 4

Title:	Pneumatic power systems	Appr Time:	16 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to understand :	-	Level
1	Pneumatic power system		L2

2	Interpreting circuit		L2
1.			
b Class No	Course Schedule	<u> </u>	Level
	Module Content Covered	CO	
1	Introduction to Pneumatic systems:Pneumatic power system,	CO7	L2
2	Advantages, limitations, applications, Choice of working medium.	CO7	L2
3	Characteristics of compressed air and air compressors.	CO7	L2
4	Structure of pneumatic control System	CO7	L2
5	Fluid conditioners-dryers and FRL unit.	CO7	L2
6	Pneumatic Actuators:Linear cylinder – types of cylinders, working	CO7	L2
7	End position cushioning, seals, mounting arrangements, and applications.	CO8	L2
8	Rotary cylinders- types, construction and application, Symbols.	CO8	L2
9	Pneumatic Control Valves:DCV such as poppet, spool, suspended seat type slide	CO8	L2
	valve, pressure control valves, flow control valves, types		
	and construction		
10	Use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin	CO8	L2
	pressure valve, symbols		
с	Application Areas	СО	L2
1	Small and medium automation	CO8	L2
2	Academic demonstration	CO7	L2
d	Review Questions	-	1.0
1	Sketch and explain Rod less type of air cylinder?	CO7	L2
2	Explain with a neat sketch, working of balanced vane motor	CO7	L2
3	Explain with a neat sketch, working of swash plate piston motor	CO8	L2
4	A hydraulic motor has volumetric efficiency of 90% and operates at 1750 rpm and	CO7	L3
	pressure of 6.9 Mpa if the actual flow of the motor is 285 lpm and actual torque of		
~	the motor is 147Nm find the overall efficiency	000	1.0
5	Sketch and explain simple pneumatic system ?	CO8	L2
6	Write a short note on cylinder mounting arrangement and it's type	CO8	L2
7	State the advantages of an pneumatic system?	CO8	L2
8	Explain with a neat sketch, working of Double acting pneumatic cylinder	CO8	L2
9	Write a note on characteristics if compressed air? Sketch and explain turbine type air motor	CO8	L2
10	Explain the use of memory valve		
e	Experiences	-	-
<u> </u>			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	ode:	15ME72	Sem:	VII	Marks:	15	Time:	75 minutes		
Cours	se:	Fluid power	system							
-	-	Note: Answ	er any 2 ques	tions, each c	arry equal m	arks.		Marks	СО	Level
1	а	State the a	dvantages o	of an pneum	natic system	?		5	CO5	L2
		Explain w cylinder	ith a neat sk	etch, work	ing of Dout	le acting p	oneumatic	5	CO5	L2
			te on charac be air motor		compressed	l air? Sketc	ch and expla	in 5	CO6	L2
2		1750 rpm	and pressur	e of 6.9 Mp	ba if the act	ual flow of	d operates at f the motor i the overall		CO6	L2
	b	Sketch and	d explain si	nple pneun	natic system	l		5	CO6	L2

	c	Write a short note on cylinder mounting arrangement and it's type	5	CO7	L2
3	a	Sketch and explain Rod less type of air cylinder?	5	CO7	L2
	b	Explain with a neat sketch, working of balanced vane motor	5	CO7	L2
	с	Explain with a neat sketch, working of swash plate piston motor	5	CO8	L2
4	a	Characteristics of compressed air and air compressors.	5	CO8	L2
	b	Structure of pneumatic control System	5	CO8	L2
	с	Fluid conditioners-dryers and FRL unit.	5	CO8	L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

0 0	1	1510570	a		Model Assignmer			1003 (13)(0		
Crs Co		15ME72	Sem:	VII	Marks:	5	Time:	180MINS		
Course			ver system		F 1 '		1 1			
			inswer 2-3 ass	ignments	Each assignmen		equal mark.		CO	. .
SNo		USN		1 ' D	Assignment Des	-		Marks	<u>CO</u>	Level
1					d less type of air			5	CO7	L2
2			Explain with a neat sketch, working of balanced vane motor					5	CO7	L2
3			Explain with a neat sketch, working of swash plate piston motor Characteristics of compressed air and air compressors.					5	CO7	L2
	4					r compres	ssors.	5	CO8	L2
5					control System			5	CO8	L2
6					ers and FRL unit			5	CO8	L2
7				-	f an pneumatic sy			5	CO8	L2
8	8 Explain with a neat sketch, working of Double acting pneumatic cylinder					5	CO7	L2		
9			Write a note o turbine type a		teristics if compre	essed air?	Sketch and explain	5	CO7	L2
10			A hydraulic n 1750 rpm and	notor has pressure		e actual f	0% and operates at low of the motor is a find the overall	5	CO7	L2
11				plain sin	ple pneumatic sy	stem		5	CO7	L2
12L3			Explain the co	ontrol of	single acting cylii	nder		5	CO8	L2
13			Explain the constructional features of poppet valve					5	CO8	L2
14			Give the classification fcv's and explain any 2 in detail				5	CO8	L2	
15			Explain with a neat sketch pressure compensated FCV					5	CO8	L2
16			Explain with a neat sketch temperature compensated FCV					5	CO8	L2
17			List the symb	olic repre	esentations of FC	V's		5	CO8	L2
18			Explain with	a neat ske	etch Regenerative	circuit		5	CO8	L2
19			Explain with	a neat ske	etch pump unload	ing circui	it	5	CO8	L2
20					is of pneumatic sy			5	CO8	L2
21					etch Regenerative			5	CO8	L2
22					ronizing circuit u		erent methods	5	CO8	L2
23			Explain hydra	ulics circ	uits for cylinder	force mul	tiplication	5	CO8	L2
24					lain Metering out		1	5	CO8	L2
25				-	control valve			5	CO8	L2
26						ruction o	f flow control valve	5	CO8	L2
27			-		sketch time delay valve				CO8	L2
28					ch twin pressure valve			5	CO8	L2
29			-		d dis advantages of		atics systems	5	CO8	L2
30					rotary valve expla			5	C08	L2
31					etch counter balar			5	C08	L2
32			1		ylinder mounting		11	5	C07	L2

D3. TEACHING PLAN - 3

Module – 5

Title:	Pnuematic control circuits	Appr Time:	16 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to understand :	-	Level
1	Familiarize with logic controls	5	L2
2	Troubleshooting	5	L2
b	Course Schedule		
	Module Content Covered	CO	Level
1	Simple Pneumatic Control:Direct and indirect actuation pneumatic cylinders,speed control of cylinders - supply air throttling and exhaust	CO9	L2
2	Signal Processing Elements:	CO9	L2
3	Multi- Cylinder Application: Coordinated and sequential motion control,	CO9	L2
4	Control:Principles - signal input and output, pilot assisted solenoid control of directional control	CO9	L2
5	Signal elimination methods, Cascading method principle, Practical application	CO9	L2
6	Air throttling. Valves, use of relay and contactors.	CO10	L2
7	Control circuitry for simple signal cylinder application	CO10	L2
8	Use of Logic gates - OR and AND gates in pneumaticApplications.	CO10	L2
9	Motion and control Diagrams. Electro- Pneumatic	CO10	L2
10	Practical examples involving the use of logic gates	CO10	L2
			L2
c	Application Areas	CO	L2
1	Actuator company (FESTO)	CO10	L2
2	Design department	CO9	L2
			L2
d	Review Questions	-	L2
1	Sketch and explain any 5 symbolic representation of DCV'S	CO9	L2
2	Explain with a neat sketch Pressure relief valve.	CO9	L2
3	State the function of Flow control valve & explain with a neat sketch Needle valve	CO9	L2
4	Explain with a neat sketch Pressure compensated valve	CO9	L2
5	Explain with a neat sketch different types of valve actuation methods	CO9	L2
6	Explain with a neat sketch solenoid-actuated DCV.	CO9	L2
7	Sketch and explain Regenerative circuit. What do you mean by speed control of hydraulic cylinder?	CO10	L2
8	What is accumulator? Give the classification of accumulators.	CO10	L2
9	Explain the circuit of an accumulator as a leakage compensator.	CO10	L2
10	What is meant by cylinder synchronizing circuit? Explain cylinder in series circuit.	CO10	L2
11	Sketch and explain speed control of a hydraulic motor?	CO10	L2
e	Experiences	-	-
1			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	15ME72 Sem: VII Marks: 15 Time:		75 minutes	5					
Cours	se:	Fluid powe	r systems							
-	-	Note: Ansv	e: Answer any 2 questions, each carry equal marks.						CO	Level
1	a	Explain tl	Explain the circuit of an accumulator as a leakage compensator.						CO9	L2
	b	What is meant by cylinder synchronizing circuit? Explain cylinder in					in 5	CO9	L2	
		series circuit.								
	c	Sketch and explain speed control of a hydraulic motor?						5	CO9	L2

15ME72

Copyright ©2017. cAAS. All rights reserved.

2	a	Explain with a neat sketch solenoid-actuated DCV.	5	CO9	L2
	b	Sketch and explain Regenerative circuit. What do you mean by speed	5	CO9	L2
		control of hydraulic cylinder?			
	с	What is accumulator? Give the classification of accumulators.	5	CO10	L2
3	а	State the function of Flow control valve & explain with a neat sketch	5	CO10	L2
		Needle valve			
	b	Explain with a neat sketch Pressure compensated valve	5	CO10	L2
	c	Explain with a neat sketch different types of valve actuation methods	5	CO10	L2
4	а	Sketch and explain any 5 symbolic representation of DCV'S	5	CO10	L2
	b	Explain with a neat sketch Pressure relief valve.	5	CO10	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	1	1510570	a		Iodel Assignmer		T.	100 '		
Crs Co		15ME72	Sem:	VII	Marks:	5 / 10	Time:	180 minu	tes	
Course		-	ver systems	•	F 1 ·		1 1			
			answer 2-3 a	-	Each assignmen		al mark.		<u> </u>	-
SNo		USN	~		Assignment Des		an ar na	Marks	CO	Leve
1				<u> </u>	5 symbolic repr		f DCV'S	5	CO9	L2
2					ch Pressure relie			5	CO9	L2
3			State the fun needle valve		w control valve	& explain w	ith a neat sketch	5	CO9	L2
4			Explain wit	h a neat sket	ch Pressure con	pensated val	ve	5	CO9	L2
5			Explain with a neat sketch different types of valve actuation methods						CO9	L2
6			Explain wit	h a neat sket	ch solenoid-actu	ated DCV.		5	CO9	L2
7				explain Rege ydraulic cyli		. What do yo	u mean by speed	5	CO10	L2
8			What is acc	umulator? G	ive the classific	ation of accu	mulators.	5	CO10	L2
9			Explain the	circuit of an	accumulator as	a leakage co	mpensator.	5	CO10	L2
10				ant by cylind			plain cylinder in	5	CO10	L2
11			Sketch and	explain spee	d control of a hy	draulic moto	or?	5	CO10	L2
12			pressure of consumed b actual torqu (i) Volumet	75 bar and by the motor e delivered b ric efficiency) rpm. If the and the .65 N-m. Fin l efficiency	3, operates with e actual flow ra d		CO10	L2
13					thods of actuation			5	CO9	L2
14					in cylinders is not		n	5	CO9	L2
15				aust air thro		ceded explain	1	5	CO9	L2
16			-		nal processing e	lements		5	CO9	L2
17				-	· · ·		natic applications		CO9	L2 L2
17							umatic applications		CO9	L2 L2
19			-		amples involvin	-		5	CO9	L2 L2
20					ulti cylinder ap			5	C09	L2 L2
20					pordinated and s			5	CO9	L2 L2
21					elimination meth			5	C09	L2 L2
22				-	ascading method			5	CO9	L2 L2
23								5	C09	L2 L2
		Explain the principal behind reversing valves					5	C09	L2 L2	
25		Explain electro pneumatic control systems in detail								
26			Explain pilo	ot assisted so	lenoid control o	f DCV's		5	CO9	L2
27	Explain the use of relays and contactors in pneumatic control systems		c control systems	5	CO9	L2				
28			List out the	application	of pneumatic sys	stems	•	5	CO9	L2
29						logic gates	5	CO9	L2	

30	With a neat sketch explain the working of linear actuator for single	5	CO10	L2	
	acting cylinder				

F. EXAM PREPARATION

1. University Model Question Paper

Course: Crs Code:		Fluid power systemsMonth /15ME72Sem:VIIMarks:80Time:	rcal	Dec /2018 180 minutes	
-		Answer all FIVE full questions. All questions carry equal marks.	Marks		Leve
1	a	State Pascal's law. Explain with neat sketch the basic hydraulic system with respect to forces and pressure in an enclosed tank		C01	L2
	b	With a neat sketch, Explain the working of a pressure compensated variable displacement hydraulic vane pump	5	CO1	L2
	с	Write short notes on: i) Reservoir system ii) Filters	5	CO1	L2
	d	What are the different problems arises in the hydraulic system and also mention the remedies	10	CO1	L2
		OR			
	a	List six desirable properties of hydraulic fluid and explain any three properties	5	CO2	L2
-	b	Discuss the problems caused by the gases in hydraulic fluids	5	CO2	L2
	с	With a neat sketch explain pressure switch	5	CO2	L2
	d	State and explain widely used types of seals in hydraulic systems	5	CO2	L2
		OR			
2	а	A vane pump has a volumetric displacement of 90 cm ³ . It has rotor dia of 5 cm and cam ring dia of 7.5 cm and a vane width of 5 cms. What must be the eccentricity	10	CO2	L2
	b	Explain the mechanism of hydraulic loading	5	CO3	L2
	с	A hydraulic motor has a displacement of 130cm ³ operates with a	10	CO3	L2
		pressure of 105 bars & at a speed of 2000rpm.if actual flow rate is			
		0.005 m^3 /s and actual torque delivered by motor is 200n-m find			
		Volumetric efficiency, Mechanical efficiency and overall efficiency			
	d	With a neat sketch explain 1 st , 2 nd class lever systems	6	CO3	L2
		OR			L2
	a	Explain the mechanism of 1 st class loading mechanism	5	CO4	L2
	b	State the advantages of an pneumatic system?	5	CO4	L2
	c	Explain with a neat sketch, working of balanced vane motor	8	CO4	L2
	d	Sketch and explain simple pneumatic system. also write a short note	6	CO4	L2
		on cylinder mounting arrangement and it's types			
3	a	Sketch and explain Rod less type of air cylinder?	5	CO5	L2
	b	Explain with a neat sketch, working of balanced vane motor	8	CO5	L2
	с	Explain with a neat sketch, working of swash plate piston motor	8	CO5	L2
	d	Explain with a neat sketch, working of unbalanced vane motor	8	CO5	L2
		OR Skotch and aurilain simple meanmatic system 2	5	001	1.0
	a b	Sketch and explain simple pneumatic system ?	5	CO6 CO6	L2 L2
	D C	Write a short note on cylinder mounting arrangement and it's type State the advantages of an pneumatic system?	5	C06	L2 L2
	d	Explain with a neat sketch, working of Double acting pneumatic cylinder	5	CO6	L2 L2
4	a	Write a note on characteristics if compressed air? Sketch and explain turbine type air		CO7	L2 L2
		motor			

ĺ	b	A hydraulic motor has volumetric efficiency of 90% and operates at 1750 rpm and pressure of 6.9 Mpa if the actual flow of the motor is 285 lpm and actual torque of	10	CO7	L2
		the motor is 147Nm find the overall efficiency			
	c	Sketch and explain simple pneumatic system ?	5	CO7	L2
	d	Write a short note on cylinder mounting arrangement and it's type	5	CO7	L2
		OR			
	a	Sketch and explain Rod less type of air cylinder?	5	CO8	L2
	b	Explain with a neat sketch, working of balanced vane motor	8	CO8	L2
	с	Explain with a neat sketch, working of swash plate piston motor	8	CO8	L2
	d	Characteristics of compressed air and air compressors.	5	CO8	L2
5	а	Structure of pneumatic control System	5	CO9	L2
-	b	Explain Fluid conditioners-dryers and FRL unit.	7	CO9	L2
	с	State the advantages of an pneumatic system?	5	CO9	L2
	d	Explain with a neat sketch, working of Double acting pneumatic cylinder	5	CO9	L2
		OR			
	a	Write a note on characteristics if compressed air? Sketch and explain turbine type air	5	CO10	L2
		motor			
	b	Explain with a neat sketch, working of air pump	5	CO10	L2
	с	Sketch and explain simple pneumatic system ?	6	CO10	L2
	d	Write a short note on cylinder mounting arrangement and it's type	5	CO10	L2

2. SEE Important Questions

Cour	se:	Fluid power systems	Month / Year	Dec /2	018
Crs C	Code	15ME72 Sem: VII Marks: 80	Time:	180 mi	nutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mod ule	Qno.		Marl	s CO	Year
1	1	Write any five desirable properties of a hydraulic fluid.	5	Co1	2018
	2	Explain three basic types of filtering methods used in hydraulic system	6	CO1	2018
	3	Explain static seals and dynamic seals with examples.	5	CO1	2018
	4	Identify the most common causes of hydraulic system break down.	4	CO1	2018
2	1	With a neat block diagram, explain the structure of hydraulic power syste	m. 5	co2	2018
	2	A gear pump has a 75 min outside diameter, a 50 mm inside diameter ar width. If the volumetric efficiency is 90% at rated pressure, w corresponding actual flow rate? The pump speed is 1000 rpm.	hat is the	co2	2018
	3	What are the advantages of hydraulic system?	5	co2	2018
	4	A pump has a displacement volume of 100 cm3. it delivers 0.0015 m3/s a and 70 bars. If the prime mover input torque is 120 NAIL Determine (i)What is the overall efficiency of the pump? (ii)What is the theoretical torque required to operate the pump?	at 1000 rpm 08	co3	2018
3	1	Explain with neat sketch of — Poppet valve with symbolic representation	n. 5	co3	2018
	2	Explain with neat sketch of pilot operated pressure Relief valve	7	co3	2018
	3	Explain with a neat sketch the working of shuttle valve with representations	n symbolic 5	co3	2018
	4	Define accumulator and explain any 2 types	3	co3	2018
4	1	Write a brief note on OR and AND gates with symbol of these switches.	5	co4	2018
	2	Explain with neat sketch of circuit of sequencing of two pneumatic cylin be done by using Solenoids, limit switches and valves.	der that can 5	co4	2018
	3	Explain with a neat sketch poppet valve	4	co4	2018
	4	Explain with a neat sketch the construction of FCV	6	co4	2018
5	1	State five disadvantages of using air instead of hydraulic oil.	5	co5	2018
	2	Explain with schematic sketch of FRL unit with ANSI symbol.	5	co5	2018
	3	Explain the characteristics of compressed air.	5	co5	2018
	4	Explain any one signal elimination method	5	co5	2018

G. Content to Course Outcomes

1. TLPA Parameters

	Table 1: TLPA	<u>– Exam</u>	ple Course	<u>e</u>			
Mo	Course Content or Syllabus	Content		Final		Instructio	
dul	(Split module content into 2 parts which have		Learning	Bloo	Action	n	Methods to
e- #	similar concepts)	Hours	Levels for		Verbs for	Methods	Measure
			Content	Level	Learning	for	Learning
						Learning	
Α	В	С	D	E	F	G	Н
1	Introduction to fluid power systems, components,	10	L2	L2	-	Chalk	Assignment -
	advantages and applications. Transmission of power				Understan	and	1
	at static and Dynamic states. Pascal's law and its				d	Board	
	applications. Fluids for hydraulic system: types,						
	properties, and selection. Additives, effect of						
	temperature and Pressure on hydraulic fluid.	10				~	
1	Seals, sealing materials,	10	-L2	L2	-Analyze		Assignment-1
	Compatibility of seal with fluids. Pressure drop in					and	
	hoses/pipes. Heat exchangers. Control heat					Talk	
	exchangers.						
	Types of pipes, Hoses and quick acting couplings.						
	Fluid conditioning through filters, Strainers; sources						
2	of contamination and contamination	10	1.0	1.0	I I., J	C111	A
2	Classification of pumps, Pumping theory of positive	10	-L2	L2	Understan	Chalk and	Assignment-1
	displacement pumps, construction				d		
	and working of Gear pumps, Vane pumps, Piston pumps Fixed, Pump performance characteristics,					Board	
	pump selection factors procedure Problems on						
	pumps. Types of Intensifiers, Pressure switches						
	/sensor, Temperature switches/sensor, Level sensor.						
	Cost estimation of mechanical process, idling time.						
2	Actuators: Classification cylinder and hydraulic	10	-L2	L2	Analyze	Chalk	Assignment-1
2	motors, Hydraulic cylinders, single acting cylinder	10	-122	12	Anaryze	and	Assignment-1
	Mounting arrangements, cushioning,					Board	
	special types of cylinders, problems on cylinders.					Doura	
	Construction and working of rotary actuators such as						
	gear, vane, piston motors, and Hydraulic						
	Motor. Theoretical torque, power, flow rate,						
	andhydraulic motor performance; numerical						
	problems. Symbolic representation of hydraulic						
	actuators (cylinders and motors).						
3	Components and hydraulic circuit design	10	-L2	L2	-	Chalk	Assignment-2
	Components: Classification of control valves,				Understan	and	
	Directional Control Valves-symbolic				d	Board	
	representation, Constructional features of poppet,						
	sliding spool, rotary type valves solenoid and						
	pilot operated DCV, shuttle valve, and check valves						
	Pressure control valves - types, direct operated types						
	and pilot operated types. Flow Control Valves -						
	compensated and non- compensate d FCV, Needle						
	valve, temperature						
	compensated, pressure compensated, pressure and						
	temperature compensated FCV.	12			A 1	01.11	
3	Design: Control of single andDouble -acting	12		L2	Analyse	Chalk	
	hydraulic cylinder,		- L2			and	Assignment
	regenerative circuit, pump unloading circuit, Double					Board	2
	pump hydraulic system, counter balance						
	valve application,						

	Hydraulic cylinder sequencing circuits, cylinder synchronizing circuit Hydraulic circuit for force multiplication Speed control of hydraulic cylinder- metering in, metering out Bleed off circuits. Pilot pressure operated circuits Hydraulic Circuit examples with accumulator.					
4	Introduction to Pneumatic systems:Pneumatic power system, Advantages, limitations, applications, Choice of working medium. Characteristics of compressed air and air compressors. Structure of pneumatic control System Fluid conditioners-dryers and FRL unit. Pneumatic Actuators: Linear cylinder – types of cylinders, working End position cushioning, seals, mounting arrangements, and applications.	- L2	L2	- Understan d	Chalk and Board	Assignment 2
4	Pneumatic Actuators: Linear cylinder – types of cylinders, working End position cushioning, seals, mounting arrangements, and applications. Rotary cylinders- types, construction and application, Symbols. Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction Use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols.	- L2	L2	-Analyse	- Lecture - Tutorial -	- Assignment -2
5	Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and exhaust air throttling. Signal Processing Elements: Use of Logic gates - OR and AND gates in pneumatic applications.Practical examples involving the use of logic gates.	- L2	L2	- Understan d	Chalk and Board	- Assignment -3 -
5	Multi- Cylinder Application: Coordinated and sequential motion control, motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves). Electro- Pneumatic Control: Principles - signal input and output, pilot assisted solenoid control of directional control valves, use of relay and contactors. Control circuitry for simple signal cylinder application.	- L2	L2	-Analyze	Chalk and Board	- Assignment -3 -

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mo	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
dul	Outcome from	Concepts		(What all Learning	(1.Action Verb,	
e- #	study of the	from		Happened from the	2.Knowledge,	

	Content or Syllabus	Content		study of Content / Syllabus. A short word for learning or	3.Condition / Methodology, 4.Benchmark)	Student Should be able to
A	I	J	K	outcome) L	М	N
A 1	Understand and	J	Λ		- Understand	Understand the
1	analyze fluid power and modes	Fluid power	Hydraulics Power		fluid power system	working of fluid power systems
1	Select components as per circuitry requirement	Compone nts		Knowledge about different components	- Analyze - features of components	Understand about different components available
2	fluid dynamics	Mechanis m	Working principles	Understanding about valve mechanisms	- Analyze - working mechanisms	Understand concept and relationships of force,pressure and energy.
2	Programmable controllers	Features		valve constructional	- Understand - different flowing capacities	Understand the constructional and working of valves
3	Analyses the working of components	Compone nts	Circuits	Have knowledge of working of components	- Analyze - features of components	Analyse different components in the circuits
	Build the circuit for certain applications	Circuits		Comprehend the working of hydraulic circuits	- Apply - building of circuits	Understand the working of circuit for certain applications
4	Pneumatic power system	Pneumati c systems	Pneumatic System			Understand the working of pneumatic systems
4	Interpreting circuit	Circuits		Comprehend the working of pnuematic circuit	 Apply building of circuits 	Analyze the working of pnuematic circuits
5	Familiarize with logic controls	Actuation	Logic control	different actuation	- Understand different actuation methods and modes	Analyse the different methods of actuation in the circuits
5	Troubleshootin g	Integratio n		-	communication	Build the circuit and analyze the working of different components in circui